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In the present paper, the profiles of incipient spilling breaking waves with wavelengths
ranging from 10 to 120 cm were studied experimentally in clean water. Short-
wavelength breakers were generated by wind, while longer-wavelength breakers
were generated by a mechanical wavemaker, using either a dispersive focusing or
a sideband instability mechanism. The crest profiles of these waves were measured
with a high-speed cinematic laser-induced fluorescence technique. For all the wave
conditions reported herein, wave breaking was initiated with a capillary-ripple pattern
as described in Duncan et al. (J. Fluid Mech., vol. 379, 1999, pp. 191–222). In the
present paper, it is shown that at incipient breaking the crest shape is self-similar with
two geometrical parameters that depend only on the slope of a particular point on
the front face of the gravity wave. The scaling relationships appear to be universal for
the range of wavelengths studied herein and hold for waves generated by mechanical
wavemakers and by wind. The slope measure is found to be dependent on the wave
phase speed and the rate of growth of the crest height prior to incipient breaking.

1. Introduction
It is well known that breaking waves enhance the rates of transfer of mass,

momentum and energy across the air–sea interface by creating turbulence, water
droplets and air bubbles. The wave shape and flow field at the point at which breaking
begins, defined here as the transition from laminar flow to turbulent flow, are critical
aspects of the dynamics of breaking waves. Though there has been considerable
research on breaking waves (see the reviews by Banner & Peregrine 1993; Thorpe
1995; Melville 1996; Duncan 2001), a general incipient breaking condition has been
elusive. The most successful work has been with steady waves. This work began with
Stokes (1847) who showed that the limiting form of the crests of a steady periodic
gravity wavetrain is a corner flow with an included angle of 120◦ and a stagnation
point at the crest. Duncan (1983) found that steady waves produced by towing a two-
dimensional hydrofoil at constant depth, angle of attack and speed would continue
to break once disturbed if the slope of the wave’s forward face was greater than 17◦.
The stagnation point idea was also used by Banner & Phillips (1974) in considering
the effect of a surface wind drift layer on the breaking criterion for a steady wave.
In experiments with hydrofoil-produced waves and a turbulent surface wake, Miller
et al. (1999) found that the breaking criterion had the same functional form as in the
theory of Banner & Phillips (1974) but was reached when the flow speed at the crest
was 50 % of the wave phase speed.
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Figure 1. Schematic of wave tank with wavemaker, wind tunnel and instrument carriage.

Work to determine a breaking criterion for unsteady waves has been less successful.
This is partly because the wave goes through a range of shapes as it breaks, and
both the theory and the experiments are more difficult than in steady waves. Recent
work in this area includes the studies of Banner & Peirson (2007), Banner & Song
(2002) and Song & Banner (2002), which focus on waves breaking within modulating
wave packets. These studies emphasize the role of the rate of increase of energy at
the maximum height of the wave packet envelope on incipient conditions and the
breaker type (spilling to plunging). Also, Tulin & Landrini (2001) have found through
numerical calculations that in deep-water modulating gravity wavetrains, a wave crest
will evolve quickly to breaking whenever the local maximum particle speed exceeds
one-half of the phase velocity of the dominant wavetrain. The relationship between
this latter breaking criterion for unsteady waves and that of Miller et al. (1999) for
steady waves is not known, even though both occur when the particle speed reaches
one-half of the wave phase speed.

In the present work, the results of experiments focused on the crest shapes of
unsteady spilling breaking waves at the point of incipient breaking are reported. Both
mechanically generated and wind-generated waves are studied, and the total range
of wavelengths is from 10 to 120 cm. This work is reported in the following three
sections: § 2 ‘Experimental details’, § 3 ‘Results and discussion’ and § 4 ‘Conclusions’.

2. Experimental details
2.1. Wave tank

The experiments were carried out in a wind-wave tank that is 11.6 m long, 1.22 m
wide and 2.1 m deep with a water depth of 0.91 m (see figure 1). The tank includes
a programmable wavemaker consisting of a vertically oscillating wedge located at
one end of the tank and a programmable instrument carriage that rides above the
tank. Both the wavemaker and the carriage are controlled by the same computer so
that coordinated motions can be obtained. Further details about the wavemaker and
carriage can be found in Duncan et al. (1999).

The tank also includes a wind tunnel. The tunnel is powered by two 5.6 kW fans
that are mounted to the ceiling of the laboratory and drive air towards the wavemaker.
An entrance section consisting of ducting, two sets of turning vanes, three screens and
a honeycomb is used to condition and redirect the air flow so that it moves parallel
to the water surface in the direction away from the wavemaker. The sidewalls of the
test section of the wind tunnel are part of the water tank, and the lid is made of clear
acrylic. The lid is positioned 0.78 m above the mean water level and ends about 1 m
before the end of the tank to allow the air to exit. The bottom of the entrance section
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Case number Number of runs f0 (Hz) λ0 (cm) A/λ0

1 3 1.15 118.06 0.0505
2 1 1.26 98.34 0.0505
3 1 1.42 77.43 0.0505
4 1 1.42 77.43 0.0496
5 1 1.42 77.43 0.0487

Table 1. The parameters of the five wavemaker motions used with the dispersive-focusing
technique. In this table, f0 is the average frequency of the wave packet; λ0 = g/(2πf0

2)
is the wavelength of the average frequency according to linear theory; and A/λ0 is the
non-dimensional amplitude of the wavemaker motion. Note that the first case was done three
times, yielding seven experiments in total.

of the wind tunnel is 10.2 cm above the mean water level. This gap allows waves
generated by the wavemaker to enter the tank. The area between the wavemaker
and the back of the wind tunnel is sealed with flexible material in order to minimize
reverse air flow under the entrance section. A beach comprised of a horsehair mat
on a tilted acrylic plate was located at the far end of the tank below the wind tunnel
exit to damp wave reflections. A skimmer/filtration system was turned on between
experimental runs to minimize surfactant levels in the tank (see Duncan et al. 1999).

2.2. Wave generation

Waves were generated using three different methods. The first method was a
dispersive focusing technique (Longuet-Higgins 1974; Rapp & Melville 1990), and the
wavemaker motion parameters were nearly the same as those described in Duncan
et al. (1999). Five wavemaker motions were used with this method, and the average
wave packet frequency f0 and the non-dimensional amplitude of the wavemaker
motions A/λ0 (where A is the overall amplitude and λ0 = g/(2πf0

2) is the wavelength
of the average frequency according to linear wave theory) can be found in table 1.
In the second method, the wavemaker was used to generate a sinusoidal wavetrain
of initial frequency f0 and initial slope a0k, where a0 is the wave amplitude and k

the wavenumber. Superimposed on this sinusoidal motion were unstable sideband
wave components at frequencies slightly above and below the frequency of the main
wavetrain. The most unstable sideband frequencies are located at f± = f0(1 ± βa0k),
where the dependence of the constant β on a0k has been determined theoretically
(Benjamin & Feir 1967; Longuet-Higgins 1978) and verified by experiments (Lake
et al. 1977; Melville 1982). In the present case, β was taken as 0.75 based on
measurements of the sideband frequencies that appeared for wavetrains generated
with only the primary wave component in our facility. The sideband frequencies
are superimposed on the main wavetrain at an amplitude of αa0, where α � 1. The
values of the parameters used in this method are summarized in table 2. In the
third method, the wind was used to generate waves. The wind speed at the centre
of the wind tunnel cross-section ranged from 6.0 to 7.2 m s−1, and the fetches at
the location of incipient breaking ranged from 3 to 5.5 m from the wind tunnel
entrance in the present study. Capacitance-type wave-height gauges were used to
measure the dominant wave frequencies. The peak frequencies ranged from roughly
2.5 to 3.5 Hz, which, via linear theory, yield wavelengths in the range of 10–25 cm.
In all, measurements from 18 different breakers are reported herein (7 generated by
dispersive focusing, 3 generated by sideband instabilities and 8 generated by wind).
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Number of runs f0 (Hz) a0k f+ (Hz) f− (Hz) α

3 2.3 0.30 2.81 1.79 0.015

Table 2. The parameters used for the three waves generated using the sideband instability
mechanism. In this table, f0 is the frequency of the main wavetrain; a0k is the measured wave
slope, where a0 is the amplitude of the initially unmodulated sinusoidal wavetrain measured
at a distance of 5 m from the wavemaker using a capacitance probe and k is determined from
f0 via linear theory; f+ is the frequency of the upper sideband; f− is the frequency of the
lower sideband; α is the ratio of the sideband input amplitudes to the input amplitude of the
main wavetrain.

2.3. Wave measurement

The profiles of the breaking waves were measured photographically with a laser-
induced fluorescence (LIF) method that employs a high-speed digital movie camera.
The wave crests were illuminated with a light sheet from an argon-ion laser operating
at 7 W (see figure 1). The light sheet was oriented vertically along the centre plane of
the tank and was 25 cm wide and 1 mm thick at the mean water level. Fluorescein
dye was mixed into the tank water. The camera (Phantom v9, Vision Research) was
set to record 1632 × 1200 pixel images with 8 bit grey levels at 250 images per second.
The camera and light-sheet optics were mounted on the instrument carriage. The
intersection of the light sheet and the water surface was viewed by the camera from
the side and slightly above and in front of the wave crest. Wave crest profiles were
extracted from each image using gradient-based edge-detection methods. A detailed
description of this measurement system and the data-processing methods can be
found in Duncan et al. (1999) and Liu & Duncan (2006).

Crest-profile measurements were taken from the instrument carriage as it moved
along the tank with the crests of the breaking waves. For the cases with mechanically
generated waves, the carriage motion was synchronized with the wave motion by trial
and error by varying the carriage starting position, the starting time relative to the
wavemaker motion, the acceleration and the final speed from run to run. For cases
in which the wind was used to generate waves, the approximate phase speed of the
waves was determined at the fetch of interest, and the carriage was run repeatedly
at this speed. A run was considered successful when a wave was seen to break in
the camera’s field of view. It is emphasized that the geometrical and propagation
characteristics of breaking wind waves measured at the same wind speed and fetch
vary from one event to another.

3. Results and discussion
Figure 2 contains LIF images of the crest region of three waves at the point of

incipient breaking (defined as the time t = 0 herein) during three different experiments.
The images have been cropped to show a 5 × 2 cm region near the wave crest, and
all the waves are moving from right to left. The wave in figure 2(a) was generated
using the dispersive-focusing technique and has a wavelength of roughly 120 cm
(=g/(2πf 2

0 ), where g is the acceleration of gravity) and an amplitude of 8 cm as
measured from the undisturbed water level to the crest. The wave in figure 2(b) was
generated by the sideband instability method and has a wavelength of roughly 30 cm
and an amplitude of 1.8 cm. The wave in figure 2(c) was generated directly by the
wind and has a wavelength of approximately 13 cm and a crest height of 0.7 cm above
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Figure 2. Images of wave crests at incipient breaking from high-speed movies in three
separate experiments. Each image shows a 5 × 2 cm section near the wave crest, and the waves
are moving from right to left. Each wave was generated using a different method and has
a different wavelength (λ) and amplitude (a). (a) Dispersive focusing, λ= 120 cm, a = 8 cm.
(b) Sideband instability, λ= 30 cm, a = 1.8 cm. (c) Wind driven, λ= 13 cm, a = 0.7 cm. The wavy
boundary between the black region at the top of each image and the non-uniform grey region
below is the wave crest profile at the intersection of the light sheet and the water surface. The
pattern seen below this boundary is the result of two refraction processes: the first as the light
sheet enters the water creating a non-uniform pattern in the fluorescein dye and the second as
the non-uniform light intensity in the glowing dye within the light sheet is viewed through the
water surface between the camera and the light sheet. More details can be found in Duncan
et al. (1999).

the mean water level in the tank before the wind is turned on. As can be seen from
the figure, a capillary-bulge pattern appears in all the images (see figure 2a for the
nomenclature). This pattern includes a round bulge formed on the forward (left) face
of the wave crest and a train of capillary waves upstream (to the left) of the leading
edge (toe) of the bulge. At the instant in time after the images shown, the toe, which
was stationary relative to the wave crest prior to these images, begins to move down
the wave face, and a turbulent flow ensues (see Duncan et al. 1999; Qiao & Duncan
2001).

Figure 3(a) shows the wave crest profiles taken from the images in figure 2. In
this plot, the profiles are aligned at the toe point to remove the large differences in
wave crest height and thereby allow better comparison of the crest profiles. As can
be seen from the figure, though the profiles are qualitatively similar, the variations
in the slopes of the free surface upstream of the toe and the curvature of the bulge
are quite pronounced. Generally speaking, both of these quantities increase with the
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Figure 3. Crest profiles of the three waves shown in figure 2. (a) After aligning the profiles
at the toe point. (b) After rotating each profile so that the slope of the front face at the toe is
horizontal and after scaling the horizontal and vertical axes by Ls and tp , respectively (see the
caption in a).

wavelength of the breaking wave. This trend in local surface slope is qualitatively
similar to the theory of Longuet-Higgins (1996). In the theory, a capillary jump,
which forms the capillary-bulge system, occurs at the point on the wave profile at
which the flow speed in the reference frame of the crest equals the minimum phase
speed of capillary–gravity waves and the gradient of the flow speed at the surface
is high. Longuet-Higgins (1996) has shown that the surface slope at the location of
this point decreases with decreasing gravity wavelength. The profile shapes shown
in figure 3(a) are qualitatively similar to those found in numerical calculations of
short-wavelength steep waves as reported by Mui & Dommermuth (1995), Fedorov
& Melville (1998), Fedorov, Melville & Rozenberg (1998), Tulin (1996) and Longuet-
Higgins & Dommermuth (1997).

In order to compare the profile shapes quantitatively, a few geometric parameters
are defined. These parameters include the vertical distance �y from the maximum
height of the profile to the toe point, the length of the first capillary wave (λc)
upstream of the toe, a mean surface slope at the toe (m), a bulge length (Ls) and a
bulge thickness (tp) (see the insert in figure 3a) . In order to obtain values for m, a
polynomial (anywhere from the second to the fourth order) was fitted to the front
wave face from the toe to a point 3 cm upstream of the toe. This polynomial was
forced to pass through the toe point which is defined numerically as the point in the
profile with maximum upward curvature. The purpose of this polynomial is to follow
the overall shape of the front face of the gravity wave near the crest while ignoring
the undulations due to the capillary waves. A typical fit is shown in the inset of figure
3(a). The slope of this polynomial at the toe point is then chosen as m = tan θ (see
the insert in figure 3a for the definition of θ). The values of m measured in this study
were found to be between 0.3 and 1.5, which correspond to θ =17◦–56◦. (Note that
θ at the crest of a limiting form Stokes wave is 30◦.) The length of the bulge Ls is
defined as the distance from the toe to the crest profile following a straight line with
slope m. The bulge thickness tp is defined as the maximum perpendicular distance
from the line forming Ls to the surface of the bulge.

Using the parameters m, Ls and tp measured for each wave at incipient breaking,
the crest profiles are plotted in figure 3(b) in the local scaled coordinate system
X′/Ls–Y ′/tp , where X′ is directed from the toe along the line Ls and Y ′ is perpendicular



Incipient breaking 277

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

X ′/ Ls

Y′/ tp

Average
Root mean square

Figure 4. Average and standard deviation of the scaled and rotated bulge profiles for all
18 waves studied herein.

to X′. When viewed in this non-dimensional way, the similarity of the profiles in the
crest region is quite interesting, considering the large differences in gravity wave
amplitude, wavelength and generation method. The scaled crest profiles for all the
other incipient breaking waves studied herein are similar to these but are not shown
here in order to make the plot clearer. Instead, a plot of the average scaled profile
and the standard deviation distribution computed from all 18 waves is shown in
figure 4. The mean profile has a single maximum at X′ ≈ 0.42Ls and goes to zero at
X′ = 0 and Ls . The standard deviation reaches a peak of 12 % on the front face of
the wave; however, careful analysis of the processing techniques indicates that much
of this variation can be attributed to the selection of the incipient breaking frame and
the toe position. The incipient breaking frame is difficult to define because it is the
frame before the toe starts moving from rest. Thus, its initial motion between frames
is quite small. The toe position is taken as the point of maximum upward curvature
of the profile. While its determination is done with a consistent numerical procedure,
the result is sometimes a little off the position one might choose by eye. The primary
effect of changing both the incipient breaking image frame and the toe position is a
slight horizontal shift of the peak in the profile. This results in a right–left shift of
the nearly vertical parts of the profile near X′/Ls = 0 and 1, thus creating the large
standard deviations there.

The parameters Ls and tp are plotted versus m in figures 5(a) and 5(b), respectively.
As can be seen in figures 5(a), the data appears to follow a single curve, independent
of the method used to generate the wave. The curve has a negative slope that decreases
with increasing m. The values of tp (figure 5b) show a fair amount of scatter, but
generally tp decreases with increasing m. This scatter is created primarily because tp
is a very small quantity that changes rapidly as the waves approach breaking and
because errors in the slope m cause changes in tp .
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Figure 5. Plots showing the variation of Ls (a) and tp (b) with the local slope parameter,
m: �, wind waves; +, sideband waves; and �, focused waves.

In the numerical calculations for steady waves (λ≈ 0.5 m) in a liquid with a very
high surface tension (9 and 16 times the surface tension of water) presented in
Longuet-Higgins (1996), the shape of the bulge and, of course, lengths describing the
capillary-ripple system scale only with the gravity–capillary wavelength 2π(γ /g)0.5,
where γ is the surface tension coefficient (σ/ρ) (see figure 18 in Longuet-Higgins
1996). A similar result was found in the experiments of Duncan et al. (1999) for
unsteady mechanically generated breakers with wavelengths ranging from 70 to
118 cm (see their figure 23). In contrast, the present results, which cover a wide range
of wavelengths and a single value of 2π(γ /g)0.5, indicate that Ls and tp increase
substantially as m decreases. However, it should be noted that at the higher values of
m, where the wavelengths are the same as those studied in Duncan et al. (1999), Ls

and tp are relatively constant.
Using the measured �y data, estimates of the underlying flow speed (qt ) at the toe

point were obtained by using the steady Bernoulli equation and by assuming that there
is a stagnation point at the crest of the wave. (While the flow is clearly unsteady and
there is no experimental verification of the stagnation point at the crest, the above
assumptions are used here in an attempt to gain some understanding of the flow
and capillary waves; see below.) The result is qt =

√
2g�y, where g is the acceleration

due to gravity. A plot of the estimated values of qt versus wave slope m is shown
in figure 6(a). A linear fit to the data yields a y-intercept of roughly 25 cm s−1. This
value is close to the minimum phase speed of gravity–capillary waves, i.e. 23 cm s−1.

When possible, measurements were also made of the wavelength of the primary
capillary wave upstream of the toe, λc. A plot of λc versus m is shown in figure 6(b).
(Due to a lack of spatial resolution and camera angle in some movies, measurements of
λc are not available for several of the dispersively focused wave cases.) The measured
values of λc range from about 5 to 4 mm, decreasing slightly with increasing m.
Because these capillary waves are stationary relative to the crest, the phase speed of
these waves relative to still water must equal qt . Using the estimated values of qt

from figure 6(a), capillary wavelengths were calculated using both the linear dispersion
relationship for gravity–capillary waves (q2

t = c2 = g/k+γ k, where k = 2π/λc, γ = σ/ρ,
σ is the surface tension and ρ is the density of the liquid) and the nonlinear dispersion
relationship for capillary waves of maximum amplitude (q2

t = c2 = 0.657γ k, from
Crapper 1957). (To our knowledge there is no analytical solution for the nonlinear
dispersion relationship for gravity–capillary waves of maximum amplitude.) The
results from these calculations are also shown in figure 6(b). As can be seen from the
figure, in spite of the approximate nature of the theory, the wavelengths calculated
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Figure 6. Measurements and analysis of the length of the first capillary wave upstream of the
toe, λc . (a) The flow speed at the toe qt (as calculated from the measured �y and Bernoulli’s
equation) versus local slope parameter m. The straight line is a least squares fit to the data. (b)
The wavelength (λc) of the first capillary wave upstream of the toe versus m; �, wind waves;
+, sideband instability waves; �, focused waves; �, linear gravity–capillary wave theory; and
�, nonlinear capillary wave theory (maximum amplitude). (Due to a lack of spatial resolution
in some images, measurements of λc were not made for several of the dispersively focused
wave cases.)

using the linear and nonlinear dispersion relationships bracket the measured values
of λc with the estimates from the nonlinear dispersion relationship providing the best
match.

The above results have shown the importance of the slope parameter m in
determining the wave crest shape at incipient breaking. The next question is what
determines m for a given breaker? Here we explore the hypothesis that m at incipient
breaking is a function of both the phase speed c and the rate of change of the crest
height just prior to breaking. The phase speed is chosen because it is related to the
wavelength, and as discussed above, it appears on both theoretical and experimental
grounds that m decreases with decreasing wavelength. (In the present experiments,
the wavelength was not measured; however, the phase speed was measured directly
by determining the speed of the crest as seen in the movies and then adding the
known speed of the instrument carriage.) The wave phase speeds fell in the range of
50–70 cm s−1 for waves generated by the wind and the sideband instability mechanism
and in the range 90–120 cm s−1 for the waves generated using dispersive focusing.

A useful measure of the rate of change of wave height at breaking is difficult to
determine. This is because the rate of change of wave height, while strongly positive
in the early stages of the approach to breaking, is close to zero (in some cases
even slightly negative) at incipient breaking for many of the waves. Based on data
for the dispersively focused breakers as shown in the Appendix, an average wave
crest growth rate P = [ym(0) − ym(−0.23T )]/(0.23T ) is used in the present work. (On
intuitive grounds, a time of 0.25T was desired for this measurement; however, it
turned out that 0.23T was the maximum value that could be used in the analysis
of the largest number of high-speed movies.) The values of P were then divided by
the corresponding values of c to give an average dimensionless growth rate, which is
essentially the rate of change of wave slope with dimensionless time t/T . Also, the
values of c were divided by the minimum phase speed of gravity–capillary waves,
cmin =

√
2(gγ )0.25 = 23.1 cm s−1, with σ = 73 mN m−1. A least squares fit of a second-

order polynomial (m = f (c/cmin , P/c)) to the data set was performed, and the resulting
contour plot of m on the c/cmin–P/c plane is given in figure 7. The data points on
the plot are colour coded on the same scale as the contours so that the accuracy of
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Figure 7. Contour plot of the slope m as a function of the dimensionless wave phase speed

(c/cmin , where cmin is the minimum gravity–capillary wave phase speed
√

2(gγ )0.25, where g is
the acceleration of gravity and γ = σ/ρ with σ the surface tension, taken as 73 dyn cm−1 and
ρ the density, taken as 1 gm cm−3) and the non-dimensional average growth rate P/c. The
contours are from a least squares fit of a second-order polynomial, m= f (c/cmin , P/c), to the
data. The shape of the contours is only supported by the experiments in the vicinity of the data
points. The face colour of each data point indicates its value of m according to the colour
legend on the right. Five of the data points for wind waves were not included in these plots
because random surface fluctuations or insufficient movie frames prior to breaking prevented
obtaining P by the method used here (see the appendix).

the fit can be estimated from visual inspection. The root-mean-square error from the
fit is 5.5 % of the average of the measured values of m, indicating that the concept
that m is a function of c and P/c has some validity. From this plot, it can be seen
that for low wave phase speeds (shorter wavelengths) the growth rate has little effect
on m, while for the highest phase speeds, m increases significantly with growth rate.
This result is in agreement with our intuition that long waves with rapidly increasing
amplitude become strong breakers. In particular, plunging breakers were not produced
in the wind-generated and sideband instability waves, which have relatively short
wavelength, while with appropriate wave generation parameters, plunging breakers
(where the local surface slope becomes vertical during the approach to breaking) can
be generated at longer wavelengths with the dispersive-focusing technique.

The dimensionless crest height growth rate P/c used here should be distinguished
from the parameter μ used by Banner & Peirson (2007), Banner & Song (2002) and
Song & Banner (2002), which is the average dimensionless growth rate of the local
energy density at the peak of the wave packet envelope. The parameter μ is related
to the evolution of the wave packet envelope, while P/c is the rate of change of
amplitude of a single wave crest as it moves through a packet.

4. Conclusions
The crest profiles of spilling breakers with wavelengths in the range of 10–120 cm

were investigated experimentally. These waves were generated with a mechanical
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wavemaker and with wind. It was found that the bulge-capillary wave system that
appears on the forward faces of short-wavelength spilling breakers is qualitatively
similar for all the waves studied herein. The bulge was found to have a self-similar
shape with its length and thickness as scaling parameters, which in turn are found to be
functions of the slope (m) of the mean water surface just upstream of the leading edge
(toe) of the bulge. This scaling seems to be independent of wave generation method,
leading one to believe that at least some features of mechanically generated and wind
waves are quite similar. It was found that m is a function of the wave phase speed and
the average growth rate (P ) of the wave amplitude before breaking begins. The data
indicates that for the low-phase-speed waves m is independent of P , while for the
higher-phase-speed waves m increases with increasing growth rate. Finally, estimates
of the length of the first capillary wave upstream of the toe that were made using a
simple theory based on estimates of the flow speed at the toe and the capillary–gravity
wave dispersion relationship compared well with the measured values. The results
of this study show that breaking is a multi-scale nonlinear phenomenon in which
the local gravity wave (10–120 cm wavelength) slope controls the surface-tension-
dominated crest shape ( ≈ 1 cm wavelength). The fact that the scaling parameters are
unaffected by wind supports the theory (Longuet-Higgins 1992) that the dynamics of
the capillary-ripple pattern at the crest are dominated by energy transfer from the
gravity wave. Also, Fedorov et al. (1998) found that the capillary-ripple patterns in
wave profiles computed with surface pressure forcing (simulating the effect of wind)
and those found in laboratory experiments with mechanically generated waves with
lengths ≈ 5–10 cm show remarkable similarity.
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grant OCE751853 is gratefully acknowledged. JDD acknowledges the support of an
ARCS Foundation fellowship. Measurements of the sideband frequencies in our wave
tank were performed by Gunther Seer.

Appendix. Wave growth rate
To illustrate the choice of the average growth rate P consider the wave crest height

versus time data for focused breakers plotted in figure 8. In this plot, the crest height
ym is non-dimensionalized by its maximum value for each wave, and the time t is non-
dimensionalized by the average wave frequency (tf0) with t = 0 the time of incipient
breaking. Data is shown for the seven dispersively focused waves. As can be seen from
the plot, the instantaneous rate of change of dimensionless crest height is nearly zero
at incipient breaking for all the waves. However, the wide range of changes in height
over the time period say from tf0 = −0.2 to tf0 = 0 for the various waves indicates a
wide range in average rate of growth. The data in figure 8 is consistent with the wave
crest travelling through a wave packet envelope and breaking when the wave reaches
the position of the maximum height of the envelope. The crest height data for the
sideband waves and some of the wind waves show similarly shaped curves.

Values of P could not be computed for five of the wind waves. The problem
in computing P for these waves stems from the fact that wind waves break at
random times and locations and that they interact with other wave components
during breaking. Because they occur randomly, it is difficult to get a full movie of
the breaking event (see the description of the procedure for obtaining movies of these
waves at the end of § 2). Thus, in some of the waves there was no photographic record
of the breaking event for the required 0.23 wave periods prior to incipient breaking.
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Figure 8. Non-dimensional height (ym(t)/(ym)max ) versus non-dimensional time (tf0) for the
dispersively focused breakers, where ym(t) is the wave height at any time t with t = 0 the time
of incipient breaking; (ym)max is the wave height at incipient breaking; and f0 is the average
frequency of the wave packet.

The interaction of the breaker with other wave components is seen in the movies as
the pre-breaking crest moves over small slow-moving wave components. Sometimes
the breaking event is triggered by this interaction. While the crest shape data at the
incipient condition was included in the geometry parameter plots for these breaking
events, a growth rate could not be obtained, since these waves can break even when
the crest height has been constant or decreasing up to the point at which the long
wave interacts with the short wave. Our relationship between c/cmin , P/c and m is not
valid for these waves, since the breaking mechanism does not involve a continuous
increase in amplitude leading up to incipient breaking. It is interesting that even for
these breaking events, the geometrical parameters describing their crest shape fall on
the same curve when plotted versus m as the data from the other waves.
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